

PRESENTATION OUTLINE

- Climate Change Considerations
- Who Cares?
- Designing/Planning for Climate Resiliency
- Case Studies
- Audience Participation What Challenges Have You Faced?
- Q&A Live Voting/Results

WHO ARE YOU?

- A. Design Professional
- B. Regulatory Authority
- C. Municipal Representative
- D. Non-Profit
- E. Other

CLIMATE CHANGE VS. WEATHER

Climate Change

A change in the state of the climate that can be identified by changes in the mean and/or the variability of its properties and that persists for an extended period of time, typically decades or longer

Weather

The state of the air and atmosphere at a particular time and place with respect to heat or cold, wetness or dryness, calm or storm, clearness or cloudiness

GLOBAL RESEARCH ON CLIMATE CHANGE

GLOBAL RESEARCH ON CLIMATE CHANGE

GLOBAL RESEARCH ON CLIMATE CHANGE

What are the Conclusions?

- 95% certain that humans are leading cause of current global warming
- Greenhouse gas emissions are extremely likely to have been dominant cause of observed warming since the mid-20th century
- Documented increase in the <u>rate</u> of Climate Change since pre-industrial era (pre-1760)
- Climate change impacts already occurring and future impacts are inevitable

NYS TEMPERATURE CONSIDERATIONS

- Average temperatures have increased by approx. <u>0.6°F per</u> decade since <u>1970</u>, with winter warming exceeding 1.1°F per decade
- 1983–2012 was likely the warmest 30-yr period in 1400 years
- Last <u>three decades</u> each <u>successively</u> warmer than <u>any</u> preceding decade since 1850
- Projected Average Annual Increase:
 - o 2.0-3.4°F by 2020s
 - o 4.1-6.8°F by 2050s
 - o 5.3-10.1°F by 2080s

Projected Temperature Increase (In)

*compared to baseline data 1971-2000

- More frequent and hotter heat waves; heat waves are silent killers; ozone days
- Stressed electric grid for A/C
- Material failures
- Ag zones move north. Dairy. Maple syrup.
- Hot (energy) oceans spawn storms
- Less winter snow pack more rapid runoff (12 percent less snow cover in June over last 30 yrs)

ECOLOGICAL CONSIDERATIONS

- Increased CO2 means:
 - Plants become less nutritious insects and animals eat more
 - Ocean acidifies harming coral & fisheries
 - o More poisonous poison ivy
- Hardiness zones move North
- Southern flora and fauna species move North
- Precipitation/temperature changes = more insects

- Mosquitoes: disease
- Nutria: eats wetlands leaving mudflats
- Cockroaches? Argh!
- Reduced winter freeze increased pest population
- New weeds & diseases for agriculture
- Extended pollen allergy seasons
- North can grow southern plants & animals. What invasive species will come?

SEA LEVEL CONSIDERATIONS

- Sea level along NY's coastline has already risen by approximately <u>1-ft since 1900</u>
- Sea level rise projections:
 - 1 to 5 inches by 2020s
 - 5 to 12 inches by 2050s
 - 8 to 23 inches by 2080s
- PLUS: Risk of a rapid ice melt scenario, Sea level could rise 37 to 55 inches by 2080s
- Coastal flooding increase in intensity, frequency, and duration

- Influences shoreline buildable land calculations
- Requires unique hardscape/softscape approaches
- Presents unique exposure and hardening challenges
- Needs wetland/ecological evaluations under present & future scenarios
- Access and drainage may change over time

NYS Precipitation Considerations

- USA northeast, only area with predicted increases
- But potentially biased to Winter, less in Summer
 - o So, more flooding in winter?
 - o And droughts in summer?
- Projected Annual Increase:
 - o 1-8% by 2020s
 - o 3-12% by 2050s
 - o 4-15% by 2080s
- · Increase in the frequency, intensity, and duration of extreme precipitation events

Projected Precipitation Increase (%) Region 5-Baseline= 38.6 in Region 7-Baseline= 40.8 in 25 20 15 10 5 2050s 2080s

*compared to baseline data 1971-2000

- Winter rain flooding rather than snow pack.
 Lost winter recreation \$
- General flooding: property damage
- Summer drought: water supplies and agriculture. Less summer aquifer recharge?
- Reservoir management dilemmas
- Summer fire risk

How to Start?

- Urban Areas may be affected more dramatically
- Suburban and Rural Areas also affected
- Include resiliency in design now where possible
- Continue and expand efforts to separate Combined Sewers
- Continue to address I/I issues by replacement and/or rehabilitation

CASE STUDIES

- Case Study No. 1 Capital Root's Troy, NY
- Case Study No. 2 Tapestry on the Hudson Troy, NY
- Case Study No. 3 IDA Yarbrough Residential Housing Development – Albany, NY
- Case Study No. 4 Dixon Road Culvert Rehabilitation
 Project Queensbury, NY

**Common Theme – Resiliency

CASE STUDY NO. 1: EXISTING SITE

CAPITAL ROOTS URBAN GROW CENTER - TROY, NY

CASE STUDY No. 1: CLIENT OBJECTIVES CAPITAL ROOTS URBAN GROW CENTER — TROY, NY

- 1. Renovate Existing Building
- 2. Demolish Existing Addition
- 3. Construct Building Addition
- 4. Remain consist with the Organization's Core Values: merging built and natural environment, public access, and education

CASE STUDY No. 1: DESIGN CONSIDERATIONS CAPITAL ROOTS URBAN GROW CENTER — TROY, NY

- Stormwater currently discharges untreated/uncontrolled to the City of Troy combined sewer and Hudson River
- On-Site Soils: miscellaneous fill material imported over years of development
- Reduce Impervious Surfaces

AUDIENCE ENGAGEMENT

What stormwater practices would you implement?

- A. Porous Pavement
- B. Rain Garden
- C. Cistern
- D. Green Roof
- E. All of the Above

CASE STUDY NO. 1: CONSTRUCTED SITE

CAPITAL ROOTS URBAN GROW CENTER — TROY, NY

CASE STUDY No. 1: RAINWATER HARVESTING

CAPITAL ROOTS URBAN GROW CENTER — TROY, NY

CASE STUDY No. 1: GREEN ROOF
CAPITAL ROOTS URBAN GROW CENTER — TROY, NY

CASE STUDY No. 2: PROJECT LOCATION TAPESTRY ON THE HUDSON — TROY, NY

CASE STUDY No. 2: PROPOSED CONDITION TAPESTRY ON THE HUDSON — TROY, NY

CASE STUDY No. 2: THE NUMBERS TAPESTRY ON THE HUDSON — TROY, NY

- Existing Condition 97% Impervious
- Proposed Condition 20% Less Impervious surface (46% if pavement did not drain to PA)
 - Community Planter Beds
 - Tree Boxes
 - Permeable Pavers
 - Lawn Areas
 - Playground Area
 - Shrub Area
 - Cistern
 - Planters/Landscaping/Bioretention
 - Green Roof (On Existing Building)

CASE STUDY No. 2: THE NUMBERS TAPESTRY ON THE HUDSON — TROY, NY

- Sky Garden
 - Rainwater Cistern 5,100-gallons = 681-CF
 - Lawn Area/Community Garden/Landscaping 237-CF
 - Permeable Pavers 172-CF
- Other Green Infrastructure Practices
 - Porous Asphalt System 6,641-SF = 2,656-CF
 - Permeable Pavers 90-CF
- Results
 - Existing Condition WQv=2,790-CF
 - Proposed Condition WQv=2,270-CF (net reduction 520-CF)
 - RRv=3,355-CF

CASE STUDY No. 3: EXISTING CONDITION

IDA YARBROUGH RESIDENTIAL — ALBANY, NY

CASE STUDY No. 3: DESIGN CRITERIA

IDA YARBROUGH RESIDENTIAL — ALBANY, NY

CASE STUDY No. 3: DESIGN CRITERIA

IDA YARBROUGH RESIDENTIAL — ALBANY, NY

CASE STUDY NO 4: EXISTING CULVERT

DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

CASE STUDY NO 4: DESIGN CRITERIA DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

UNIQUE DESIGN CRITERIA

- Significant Joint Separation
- Class AA(T) Stream
- Road Crown 17-Feet over Pipe Invert
- Heavily Traveled Corridor
- Significant Change in Direction in Stream
- Bound by Halfway Brook Dam and I-87
- Sensitive to Halfway Brook Dam EAP

CASE STUDY NO 4: PROJECT LOCATION DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

CASE STUDY NO 4: CONSTRUCTION

DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

CASE STUDY NO 4: CONSTRUCTION

DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

CASE STUDY NO 4: CONSTRUCTION

DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

CASE STUDY NO 4: CONSTRUCTION

DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

CASE STUDY NO 4: CONSTRUCTION

DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

CASE STUDY NO 4: CONSTRUCTION

DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

CASE STUDY NO 4: PROJECT RESILIENCY DIXON ROAD CULVERT REHABILITATION — QUEENSBURY, NY

- Steel Reinforced Pipe 100-year life span, 70-year Warranty
- Hard Riffle Scour Protection, Trout Movement
- Stream and Road Bank Stabilization
- Slope Protection
- Culvert Designed to Convey 150-year Storm

AUDIENCE ENGAGEMENT

What is your favorite Case Study?

- A. No. 1 Capital Roots Urban Grow Center
- B. No. 2 Tapestry on the Hudson
- C. No. 3 Ida Yarbrough Residential
- D. No. 4 Dixon Rd Culvert

AUDIENCE ENGAGEMENT

Do you believe stormwater management design and regulation are headed in the right direction?

- A. Yes
- B. No

AUDIENCE ENGAGEMENT: DESIGN PROFESSIONALS

- 1. What unique projects have you tackled?
- 2. What issues? Design constraints?
- 3. How were they resolved?

AUDIENCE ENGAGEMENT

Do you believe that the benefits of Green Infrastructure outweigh the challenges?

- A. Yes
- B. No

AUDIENCE ENGAGEMENT: MUNICIPAL FORCES

- 1. What unique projects have you tackled?
- 2. What issues? Design constraints?
- 3. How were they resolved?

